Abstracts Physics

Add abstract

Want to add your dissertation abstract to this database? It only takes a minute!

Search abstract

Search for abstracts by subject, author or institution

Share this abstract

Tuning the interfacial properties of supported metal nanoclusters

by Leila Costelle

Institution: University of Helsinki
Department: Department of Physics, Division of Materials Physics
Degree:
Year: 2011
Keywords: fysiikka
Posted:
Record ID: 1132371
Full text PDF: http://hdl.handle.net/10138/28195


Abstract

Nanoclusters are objects made up of several to thousands of atoms and form a transitional state of matter between single atoms and bulk materials. Due to their large surface-to-volume ratio, nanoclusters exhibit exciting and yet poorly studied size dependent properties. When deposited directly on bare metal surfaces, the interaction of the cluster with the substrate leads to alteration of the cluster properties, making it less or even non-functional. Surfaces modified with self-assembled monolayers (SAMs) were shown to form an interesting alternative platform, because of the possibility to control wettability by decreasing the surface reactivity and to add functionalities to pre-formed nanoclusters. In this thesis, the underlying size effects and the influence of the nanocluster environment are investigated. The emphasis is on the structural and magnetic properties of nanoclusters and their interaction with thiol SAMs. We report, for the first time, a ferromagnetic-like spin-glass behaviour of uncapped nanosized Au islands tens of nanometres in size. The flattening kinetics of the nanocluster deposition on thiol SAMs are shown to be mediated mainly by the thiol terminal group, as well as the deposition energy and the particle size distribution. On the other hand, a new mechanism for the penetration of the deposited nanoclusters through the monolayers is presented, which is fundamentally different from those reported for atom deposition on alkanethiols. The impinging cluster is shown to compress the thiol layer against the Au surface and subsequently intercalate at the thiol-Au interface. The compressed thiols try then to straighten and push the cluster away from the surface. Depending on the cluster size, this restoring force may or may not enable a covalent cluster-surface bond formation, giving rise to various cluster-surface binding patterns. Compression and straightening of the thiol molecules pinpoint the elastic nature of the SAMs, which has been investigated in this thesis using nanoindentation. The nanoindenation method has been applied to SAMs of varied tail groups, giving insight into the mechanical properties of thiol modified metal surfaces. Nanoclusters are objects made up of several to thousands of atoms and form a transitional state of matter between single atoms and bulk materials. Due to their large surface-to-volume ratio, nanoclusters exhibit exciting and yet poorly studied size dependent properties. When deposited directly on bare metal surfaces, the interaction of the cluster with the substrate leads to alteration of the cluster properties, making it less or even non-functional. Surfaces modified with self-assembled monolayers (SAMs) were shown to form an interesting alternative platform, because of the possibility to control wettability by decreasing the surface reactivity and to add functionalities to pre-formed nanoclusters. In this thesis, the underlying size effects and the influence of the nanocluster environment are investigated. The emphasis is on the structural and…

Add abstract

Want to add your dissertation abstract to this database? It only takes a minute!

Search abstract

Search for abstracts by subject, author or institution

Share this abstract

Relevant publications

Book cover thumbnail image
The Census of Warm Debris Disks in the Solar Neigh...
by Patel, Rahul I.
   
Book cover thumbnail image
Neutron Stars and NuSTAR A Systematic Survey of Neutron Star Masses in High...
by Bhalerao, Varun B.
   
Book cover thumbnail image
Functional Domain Motions and Processivity in Bact... A Molecular Dynamics Study
by Joshi, Harshad
   
Book cover thumbnail image
The Kiloparsec-Scale Structure and Kinematics of H...
by Law, David R.
   
Book cover thumbnail image
The Manufacture of High Temperature Superconductin...
by Richardson, Kurt A.
   
Book cover thumbnail image
An Improved Form for the Electrostatic Interaction...
by Sushkin, Nicholas V.
   
Book cover thumbnail image
Electronic and Optical Properties of Semiconductor... A Study Based on the Empirical Tight Binding Model
by Lew Yan Voon, Lok C.