Abstracts Earth and Environmental Sciences

Add abstract

Want to add your dissertation abstract to this database? It only takes a minute!

Search abstract

Search for abstracts by subject, author or institution

Share this abstract

Phosphorus Pathways In Deep Time

by Craig Walton

Institution: University of Cambridge
Department:
Degree: PhD
Year: 2022
Keywords: Prebiotic chemistry; Geology; Early Earth; Meteorites; Collisions
Posted: 3/25/2025
Record ID: 2251569
Full text PDF: https://www.repository.cam.ac.uk/bitstreams/8385304d-b5a1-4ef7-9721-41c8ab9e7857/download


Abstract

Some of the most fundamental questions in natural science ask about the nature of early Earth. The conditions under which Earth formed and life emerged on its surface are especially uncertain. However, we are left with precious little evidence to study: most sufficiently ancient terrestrial rocks have long since been destroyed, and our sampling of the wider Solar System remains largely incomplete. This deficit may be reduced by combining insights from planetary science, geochemistry, and biology. The element phosphorus (P) is limiting for life in many environments on the modern Earth. Changes in global P availability may have played a large role in shaping biogeochemical evolution. Moreover, the baseline availability of P in planetary crusts is determined by processes of accretion, core formation, and late bombardment. Phosphorus is therefore of biological, cosmochemical, and astrophysical interest, providing a focal point from which to explore these diverse yet inter-related topics. Most of the P in our Solar System is stored in the form of minerals. Phosphorus-bearing minerals preserve information on pressures and temperatures experienced both during their initial formation and across the subsequent reaches of geological time. These minerals act as useful tools for probing the geological history of rocky objects, including the collisional processes through which asteroids and planets may be assembled, or indeed destroyed. However, the mechanisms by which P-bearing minerals form and by which they record collisions are uncertain, compromising interpretation of shocked meteorites as a record of Solar System history. The highly shocked Chelyabinsk meteorite exemplifies this point, containing a suite of variably deformed phosphate minerals of uncertain origin that have been used to infer several mutually exclusive scenarios for the collision history of the parental asteroid. Chelyabinsk preserves three lithologies: light (host rock), dark (containing a higher proportion of melted phases), and shock-melt (fully melted and quench crystallised material). Here, a comprehensive analysis of P mineral distribution and associated microtextures in each lithology is presented. I observe continuously strained as well as recrystallized strain-free merrillite populations. Grains with strain-free subdomains are present only in the more intensely shocked dark lithology, indicating that phosphate growth predates the development of primary shock-metamorphic features. Complete melting of portions of the meteorite is recorded by the shock-melt lithology, which contains a population of phosphorus-rich olivine grains. The response of phosphorus-bearing minerals to shock is therefore hugely variable throughout this monomict impact breccia. I propose a paragenetic history for P-bearing phases in Chelyabinsk involving initial phosphate growth via P-rich olivine replacement, followed by phosphate deformation during an early impact event. This event was also responsible for the local development of shock melt that lacks phosphate grains and…

Add abstract

Want to add your dissertation abstract to this database? It only takes a minute!

Search abstract

Search for abstracts by subject, author or institution

Share this abstract

Relevant publications

Book cover thumbnail image
Scientific Approach Principle for New Resilient Co... Revitalizing Revere Beach, MA - A Case Study for F...
by Kianous, Anahita
   
Book cover thumbnail image
Growth and Productivity of Winter Maize (Zea mays ...
by Shrestha, Jiban
   
Book cover thumbnail image
Hydrological Forecasting with Radar and the Probab...
by Adediran, Gbotemi Abraham
   
Book cover thumbnail image
Agricultural Innovation in Rural India The Paradox of Farmer Nonadoption in Bajwada, Madh...
by Malpani, Natasha
   
Book cover thumbnail image
The Parameters Limiting the Effectiveness of Cumul...
by Taylor, Duncan
   
Book cover thumbnail image
Subsurface Evaluation of Source Rock and Hydrocarb...
by Iheanacho, Ugochukwu Princewill
   
Book cover thumbnail image
Structural and Seismic Facies Interpretation of Fa...
by Olowoyo, Kehinde Oluwatoyin
   
Book cover thumbnail image
Effect of Temperature and Impurities on Surface Te...
by Udeagbara, Stephen Gekwu